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Abstract

One of the recent breakthroughs in astronomy was the first
observation of a black hole shadow, due to gravitational light
deflection in the vicinity of a black hole photon sphere. This
thesis sets out to visualize gravitational light deflection by a
Schwarzschild black hole using Python simulations. Starting
from basics of differential geometry, the concepts and defini-
tions of metric, connection, Riemann curvature tensor and the
geodesic equation are introduced. Then moving to Einstein’s
general theory of relativity, the field equations are stated and
the Schwarzschild metric is found as the unique static spher-
ically symmetric solution. In order to derive the geodesics of
Schwarzschild, which are crucial in providing the theoretical ba-
sis for this computational project, the Euler-Lagrange equations
are applied. Thus, the ordinary differential equations (ODE)
describing the trajectories of light rays near the black hole are
obtained. Next, the initial value problem of the given ODE can
be solved, yielding the trajectories of light rays approaching
the black hole for given initial conditions. Python simulation
algorithms are presented in pseudo-code form, which include
the algorithms computing the trajectories, and the visualiza-
tion of light deflection. Finally, the visualization algorithm re-
veals how rectangular coordinates are transformed to show how
equirectangular images as input are optically distorted by the

Schwarzschild black hole.
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Chapter 1

Introduction

One of the most recent astronomical achievements was the discovery of a
black hole shadow created by gravitational light deflection in the vicinity
of a black hole photon sphere [2—4].

A ring-like form with a dark core area [4], the black hole’s shadow, was
discovered using a variety of calibration and imaging techniques, and it
stayed consistent over numerous EHT observations. As visible in Figure 1.1,
Messier 87 [2], a massive galaxy in the nearby Virgo galaxy cluster, features

a black hole at its center.

Figure 1.1 First Shadow [3]

The Event Horizon Telescope (EHT) is a planet-scale array of eight ground-

based radio telescopes that was created in conjunction with scientists from



all around the world to capture images of a black hole [2]. Which is the
basis for a technique known as very-long-baseline interferometry (VLBI) [2].
VLBI synchronizes telescopes all around the world and uses the rotation of
our planet to form a gigantic, Earth-size observatory [2].

On April 10, 2019, EHT researchers revealed that they have succeeded
in presenting the first direct visual evidence of a supermassive black hole
and its shadow [2-4]. As predicted by Einstein’s general relativity, the
EHT is the result of years of international work and gives scientists with a

new instrument for exploring the Universe’s most extreme objects.



Chapter 2

Spacetime

2.1 Differential Geometry

In this section, the basic differential geometry concepts and definitions
involved in this signature work, including tensor, metric, connection, Rie-
mann metric, and geodesics, are given with the help of Advanced General

Relativity written by John Stewart [1].

2.1.1 Tensor

Definition 1. A (1,2) tensor S on T, (M) is a map [1]
ST, (M) xT,(M)xT; (M) — R
which 1s linear in each argument.

2.1.2 Metric

Definition 2. A metric tensor g at a point p in M is a symmetric (0,2)

tensor. It assigns a magnitude \/|g (X, X)| to each vector X in T, (M),
denoted by d (X), and defines the angle between any two vectors X, Y of



2.1 Differential Geometry

non-zero magnitude in T, (M) via [1]

_ 9(
a(X,Y) = arccos {d e

2.1.3 Connection

Definition 3 (Linear Connection [1]). A linear connection V on M s a
map sending every pair of smooth vector fields (X,Y) to a vector field V xY
such that

Vx (@Y +2Z)=aVxY +VxZ

for any constant scalar a, but
Vx (fY) = fVxY +(X[)Y
when f is a function, and it is linear in X
VxipyZ = (VxZ+ fVyvZ).

Further, acting on functions f, V.X is defined by

Vxf=Xf.

Definition 4 (Covariant Derivative). VxY is not linear in Y, V is not
a tensor. While, VxY is linear in X, thus defining a (1,1) tensor VY
mapping X to VxY, called the covariant derivative of Y, where VxY 1is

called the covariant derivative of Y with respect to X.

Definition 5 (Components of Connection [1]). Let (e,) be a basis for vector
fields and write V., as V,. Since V ey is a vector there exist scalars [,
such that

c
vaeb =T baCe-



2.1 Differential Geometry

The 'y, are called the components of the connection.

Theorem 1. If a manifold possesses a metric g then there is a unique
symmetric connection, the Levi-Civita connection or metric connection V
such that [1]

Vg =0.

Moreover, the Levi-Civita connection coefficient in the three-dimensional
Euclidean space shares the same definition with Christoffel symbols in Rie-

mannian geometry, which is

Definition 6. Christoffel symbols is defined by formula [1]

A 1 .
szm = §gm (gmn,k + Jkn,m — gkm,n) .

2.1.4 Riemann

The metric tensor g, describes what the Levi-Civita connection, which
in return completely describes Riemann curvature tensor. The Riemann
curvature tensor in which the gravitational field is actually manifests. That

is, the metric tensor ¢ is said to describe the gravitational field.

Definition 7. Riemann metric tensor is [1]
R(X,Y)Z =VxVyZ —VyVxZ -V xy|Z,

where Vx, Vy and V|xy| are Levi-Civita connection.

Definition 8. Riemann curvature tensor is [1]
R (u,v)w =V, Vyw — V,V,w — Vi yjw.

Moreover, the Ricci curvature tensor is a contraction of the 1st and 3rd

index of Riemann curvature tensor, which is defined as



2.2 Einstein’s Field Equations

Definition 9. The Ricci scalar is [1]
R = ¢g®Ry.
Definition 10. The Ricci curvature tensor is [1]

Rab =R,

ach®

2.1.5 Geodesic Equation

Generally, starting from the metric tensor which generalizes the property of
Euclidean space, a manifold is called Riemannian manifold if it is equipped
with positive definite metric tensor. On a Riemannian manifold, the curve

connecting two points, that has the smallest length is called geodesic.

Definition 11 (Geodesics [1]). Let X be a vector field such that VxX = 0.

Then the integral curves of X are called geodesics.

Theorem 2 ([1]). There is precisely one geodesic through a given point

p € M in a giwen direction X,.

2.2 Einstein’s Field Equations

The basic form of Einstein’s field equations is given as [1]

G

1
Ry — §R9W + Agu = ?TNV

where R, represents Ricci curvature tensor, R represents Ricci curvature
scalar, g,, represents metric tensor, A represents cosmological constant,
G represents gravitational constant, ¢ represents the speed of light, k =
871G /¢t &~ 2.077 x 10743 N~ represents the Einstein gravitational constant,

and T}, represents the stress energy-momentum tensor. The left hand side



2.2 Einstein’s Field Equations

of the equation, (RW — %Rgm, + AgW), tells the geometry of spacetime,
by showing the curvature of spacetime as determined by the metric g.
While the right hand side of the equation, (82—4GTW), displays matter energy
content of spacetime. Or frankly speaking, the right hand side describes the
matter movement. Hence, easily speaking, the the reason why Einstein’s
field equations are important is it connects geometry of spacetime with

matter movement.

2.2.1 Components of Einstein’s Field Equations

The spacetime described by Einstein’s field equation is measured in four
dimensions which are 0 time, 1 z-axis, 2 y-axis, and 3 z-axis, denoted by the
Greek letters uv. Where 1, 2, and 3, i.e., x, y, and z-axis together describe
the space while 0 describes the time. In this case, though the Einstein’s
field equation seems like to be a single equation, there are actually 16 non-
linear partial differential equations expended by the single equation. The
reason is that because the spacetime described by the equation has four
dimensions, which results in R, ¢, 9 and T}, these four tensors, all
being in 4 dimensions. Therefore, there are 4 x 4 = 16 equations in total.
However, due to the symmetry property of tensors, 6 equations out of 16
are duplicate, which makes them total of 10 non-linear partial differential

equations. The expended metric tensor from goy to gs3 is shown as

goo Yo1 Go2 9Jos

dio 911 912 913
Juv =

g20 Gg21 g22 G23

g30 931 g32 g33

Since the metric tensor is a symmetric tensor, that is to say, g.., = guy,

the ten components of the metric tensor without the duplicate ones are



2.2 Einstein’s Field Equations

therefore
Joo Go1 Go2 Jos
gir 912 413
Juv = )

922 923

933
which are in total 10 components. Similarly, the stress energy-momentum
tensor, T, is also a symmetric tensor. That is to say, T}, = T,,, holds as

well. Therefore, as the metric tensor, the components of the stress energy-

momentum tensor are in total 10 components, without the duplicate ones.

2.2.2 Ricci Curvature Tensor

As introduced above, the Ricci curvature tensor is a contraction of the 1st
and 3rd index of Riemann curvature tensor. Ricci curvature tensor actually
tracks volume change along geodesics, which means how volume grow and
shrink in geodesics.

Depending on the curvature, which is actually the manifold that are
dealing with, Ricci curvature R shows the change in volume. And it hap-
pens either in a static way, a growing or decreasing way. Since the volume
change is not so relevant to this signature work, it will not be further

discussed.

2.2.3 Ricci Scalar

As shown above, Ricci curvature tensor is actually a measurement how
an object shrinks or grows in size, or remains static based on the sign of
curvature of spacetime (= 0 static, > 0 converging, < 0 diverging).

While, Ricci scalar actually shows how an object deviates from standard
Euclidean space. And in this case, the sign of Ricci scalar really matters.

The definition of Ricci scalar is R = g% Ry [1].



2.2 Einstein’s Field Equations

2.2.4 Einstein Tensor

Since Einstein’s gravity is with the curvature of spacetime and Riemannian
geometry which dealing with curvature, based on Marcel Grossman and
Michele Besso’s basic thoughts of tensor, Einstein curvature tensor is given

as a combination of Ricci curvature tensor and metric tensor, defined as

Definition 12. The FEinstein curvature tensor is [1]
1
Gab = Rap — §Rgab7

which can also be derived directly from Einstein’s field equations.

2.2.5 Stress Energy-Momentum Tensor

The stress energy-momentum tensor is actually the relativistic extension of
classical stress tensor. It describes energy and momentum flux throughout
spacetime and gives rise to the gravitational field in general relativity.

As shown in Einstein’s field equations, the stress energy-momentum

tensor can be expressed as

Too Tor To2 Tos
Two Ty Ty T
Too T Toa Tos
Tyo Ts1 Ty T3
where Tyg describes energy density, To1, T2, Toz, Tho, To0, T30 describe mo-

mentum density, T1o, To1, T13, T51, Th3, T35 describe shear stress, and Ty, Tho, T33

describe pressure.



Chapter 3

Schwarzschild

Now we have the Einstein’s field equations and we are able to see how they
predict the existence of black holes, gravitational waves and the expansion
of the universe by effecting on cosmology.

When it comes to black hole solutions, we can categorize them for elec-
trically charged and uncharged black holes, and rotating and non-rotating
black holes. We are going to look at the uncharged non-rotating case,
called the Schwarzschild solution, which is governed by the Schwarzschild
metric. The Schwarzschild metric is the spacetime metric for a spherically
symmetric non-rotating mass that has no electric charge.

The Schwarzschild metric predicts gravitational time dilation, the grav-
itational Doppler effect, the bending of light due to gravity, shifting in per-
ihelion of orbits, and the existence of black holes with event horizon with
a radius of R, which is also called the Schwarzschild radius [5].

The metric was first discovered by Karl Schwarzschild, who published
the paper “On the Gravitational Field of a Mass Point according to Ein-
stein’s Theory” in Janurary, 1916, only few months after Einstein’s general

relativity paper in 1915.

10



3.1 Schwarzschild Metric

3.1 Schwarzschild Metric

In this section, we will show basic derivation of Schwarzschild metric [5].

3.1.1 Coordinates

Since we are dealing with a spherically symmetric mass, it is better to deal
with spacetime in spherical coordinates. Therefore, we are going to use
the spherical coordinates (ct,r, 6, ¢) instead of the Cartesian coordinates

(ct,z,y,z) as defined

r=+xz2+y?+ 22

z z
0 = arccos (—) = arccos
r a4+ y? 4 22
¢ = arctan (g) ,
x
where 7 is the radius, # is the angle from the north pole or called co-latitude,

and ¢ is the angle of rotation around the vertical axis or called longitude,

as shown in Figure 3.1.

Figure 3.1 Spherical Coordinates

11



3.1 Schwarzschild Metric

3.1.2 Summations

Greek letters are used as summation index, which refers to all four space-
time indices

G, V0 —=ct,1 =12 —=0,3 = ¢.

While, Latin or English letters are used for the summation index which

only refers to the spatial indices without time, as

Gijs 171 —=1,2—=0,3 = ¢.

3.1.3 Schwarzschild Metric Derivation

As introduced above, given that the basic form of Einstein’s field equations
is given as [1]

G

1
Ry, — QRQW + Agu = 7TMV'

To solve for the Schwarzschild solution from the Einstein’s field equations,
basically, we put in an energy-momentum tensor 7}, to the right hand side
of the Einstein’s field equations and solve for the metric tensor g,,, where
the Ricci curvature tensor R, is made of the second derivative of g,,.
That is to say, we put in a description of the mass energy and momentum
in spacetime, and we get out a complete description of the geometry of
spacetime.

The energy-momentum tensor of the interior of a body is non-zero. For
example, inside our earth, there are mass and pressure such that the energy-
momentum tensor inside the earth is non-zero. However, the exterior of
a body, lets say, outside the earth, we can assume that the spacetime is
approximately a vacuum so that the energy-momentum tensor 7),, is zero.

Thus, for a spherically symmetric mass, we set the energy-momentum

tensor 7}, in the Einstein’s field equations to be zero.

12



3.1 Schwarzschild Metric

Moreover, we are also going to set the cosmological constant to zero
since it is basically negligible unless we are working at cosmological scales,
which gives A = 0.

Therefore, the components 8:—4GTW and Ag,, are all zero and what is

left is actually the Einstein tenor
1
ij = RMV — §ng, = 0.
If we take the trace of what is left using the inverse metric tensor, g"¥, as
174 14 1 v
ngu = RMVgM - §Rg;wgu =0,

where the trace of the Ricci tensor is the Ricci scalar, i.e., R, R = R,
and the trace of g,,¢g"" is the four by four identity matrix 04 whose value
is 4.

Thus we have

1 1

which ends up with
R =0,

i.e., the Ricci scalar is zero.

Hence, for a vacuum region, the Einstein’s field equations is simplified
to the Ricci tensor being zero, as Rfj = 0, which is called the Ricci flat
spacetime [5]. Given the spacetime is Ricci flat, there are no immediate
changes in the volume of a group of test particles outside the massive
particle.

While, the vacuum outside the mass still involves curved spacetime
because the Riemann curvature tensor here is non-zero, as R%,,, # 0.

Therefore, the Schwarzschild metric derivation takes R = 0 and solves

for the components of the 4 x 4 spacetime metric, that describes the curved

13



3.1 Schwarzschild Metric

spacetime near a massive particle, M.

Moreover, the assumption that the effects of gravity become negligible
as moving far away from the mass M is proposed. That is to say, the
spacetime becomes basically flat described by the Minkowski metric in

Cartesian coordinates,

-1 0 0 O ]
0 -1 0 O
0 0 -1 0
_0 0 0 —1_

As for the Minkowski metric in spherical coordinates which represents the

flat spacetime, given the Cartesian coordinates basis as

x =1 (siné) (cos @)
y =1 (sin ) (sin ¢)

z =r(cosb),

we need to change from Cartesian coordinates basis to the spherical coor-

dinates basis using multi-variable chain rule,

or ~orox ordy  oros
d Ox 0 Oyod 0z0
90 900z 900y 0002
0 O0rd Oyd 0z0
96~ 960x | 990y | 990z

g 0z 0 8y2 822

which gives

0 . 0 . ., 0 0
Fri sin # cos gb% + Smé’smgba—y + COSQ&

:TCOSHCOSgﬁaﬁ—f-TCOSé)Sin@— —TSinQﬁ
x

9
00 dy 0z
0 .. 0 . o)

8_g25 = —rsm@sm(ba—x + rschoscb@—y +0,

14



3.1 Schwarzschild Metric

then calculate the dot products of the basis vectors,

8278 ai .92 2 -2 .92 2
w_E'E__SmGCOS ¢ — sin” fsin” ¢ — cos™ 6

0 _ 0 0 _ 5 2 2 020 ain2 2 2
2 =90 99— | o8 0 cos™ ¢ — r* cos” fsin” ¢ — r*sin” 0
2

(987& = a% . % = —r?sin? fsin? ¢ — r?sin® 0 cos® ¢.

We are able to get these components for the metric tensor in spherical

coordinates,

82

o

o = "

0 2 o2

—— = —r“sin“0

0¢? ’
while

82
o~

which is unchanged.

Hence, the Minkowski metric in spherical coordinates is given as

-1 0 0 0 ]
0 -1 0 0
0 0 -—r? 0
0 0 0 —7r?sin®0

The Minkowski metric should be the metric far away from the mass as r
approaches infinity and spacetime becomes flat. While close to the mass,
the metric components of the curved spacetime are unknown. However,
some assumptions can be used to narrow down the exact form that the
metric components should take.

The first assumption is we assume that the spacetime is static, which

tells two things [5],

15



3.1 Schwarzschild Metric

1. the metric does not depend on time, that is to say

0

~Y9ur — 07
ot

2. the spacetime is symmetric when reversing the time coordinate, which
is equivalent to say that g,, will not change as ¢ — —¢. This also implies
that the black hole is non-rotating.

Moreover, since basis vectors are just partial derivatives with respect to
a coordinate variable (here is r, 0, ¢), reversing the direction of the time

coordinate also reverses the direction of the time basis vector, as

0 0 0
G === = o = — 6

dct  Oc(—t) Oct

ast — —t.

However, for different components of the metric, the sign will vary, as

g = ¢ (et, €t) =g (—eu _et> = Ot

while

gti = (6t7ei) =g (—et,ei) = —0ti,

where 1 =1, 0, ¢.

Since gy; = —gqy4, for i =r, 6, ¢ we have
gti = 07

that is to say, the spacetime metric g,,’s components g, g9, Gigs Grts Gor,

16



3.1 Schwarzschild Metric

get are all 0, which gives to be

gt 0 0 0
0 9rr  Gro gr¢
0 gor 900 Goo

| 0 9or Geo 9o |

The second assumption made is that the spacetime is spherical symmetry,
which is equivalent to say that the 6§ and ¢ components should resemble

the metric for a sphere of radius r, that is,

g¢e 0 0 0 g O 0 0
0 rr T r 0 rT T r
Grr Gro Gré N g 9ro Gre
0 Gor Goo Yoo 0 gor —C(r)r? 0
0 Gor Gso Yoo 0 Gor 0 —C (r)r?sin?0

where C'(r) is radial scaling function.

Moreover, if we want the radial basis vector e, to stick out normal to
the sphere in the radial direction, it must be perpendicular to both ey and
eg, which gives

eg- e =0=gor = gro
g er = 0= Gor = Gro-
And hence, under our assumption so far, the spacetime metric is diagonal

and is given as

g O 0 0

0 grr 0 0

0 0 —C(r)r? 0 7
00 0 —C (r) r¥sin? 0]

where the remaining ¢, and g,, components should only depend on the

17



3.1 Schwarzschild Metric

radial coordinate 7, if we want to maintain spherical symmetry as stated
early above.

Let g4 to be A (r) and g, to be B (r). Since the metric component B ()
corresponds to a space-like direction (follow the (+ — ——) equation), using

a negative sign for it to get

Al(r) 0 0 0
0 -B(r) 0 0
0 0 —C(r)r? 0
0 0 0 —C (r) r¥sin? 0]

For further simplification, we redefine the radial coordinate r to be 7 =
C (r)r which will eliminate the function C'(r) on the last two metric

components and gives the metric as

A® 0 0 0 |
0 —B@F 0 0
0 0 -2 0
0 0 0 —sin’f

and just for simplicity, just write 7 as r in the following context, thus, the

Schwarzschild metric g, is given in the form of

(A) 0 0 0o |
0 —-B(r) 0 0
0 0 —r? 0

I 0 0 0 —rZsin? 0_

After simplifying the form of the metric as much as possible, in order
to solve for A(r) and B (r), we will going to calculate the Levi-Civite

connection coefficients I'7,, then calculate the Ricci tensor R, and then

18



3.1 Schwarzschild Metric

force the metric to give us the results of Newtonian gravity in the limit of
low velocity and weak gravity, which will give us the Schwarzschild metric.
There are 13 non-zero Levi-Civite connection coefficients in the Schwarzschild
solution, and only 9 of them are independent.
Let us start by calculating the Levi-Civite connection coefficients.
Since the spacetime metric g, is diagonal, we can easily get the inverse

metric just by taking the reciprocal of all of the diagonal elements as

- _
A0 0 0 0
1
g = 0 B0 0 0
0 0 L 0
L 0 0 —r2 ;in20_
whose indices are
1
doo (T> ) g A (7’) 9
1
— —B 11
g1 (7’) ) g _B (7’) )
1
ga2 = =17, 922_—737
1
2 i 2 33
3= — 0 _—.
933 et g —r2sin? 6

Given the standard formula for the Levi-Civite connection coefficients as

g 1 o
F,uzx - 59 (augau + augoax - aag,uu) y

since the metric is diagonal, the two indices of Levi-Civite connection co-
efficients always need to match if the components are to be non-zero. So
we can replace all the « indices with o to rewrite the formula for the Levi-

Civite connection coefficients as

1
PZJ/ = §gaa (al/gcru + 8,ugm/ - aog,uu) .

19



3.1 Schwarzschild Metric

Let us start from the calculation of F?W, and the rest of F}W, Ffw and Ffw
are similar.

Substitute o with 0, we have

1
F?w = 5900 (aVQO;L + 8u90u - a()g,uu)

The values of p and v make differences:

1. When pr = 00,

1
Pgo = 5900 (Gogoo + ogoo — Gogoo) -

Since goo does not depend on time, all the time derivative terms, i.e., Jygoo,

Jogoo and Oygoo, go to zero which gives
Fgo — 0.
2. When puv = 1 where 1 = 1,2, 3,

1“9:1

2900 (0i90i + 0i90i — 0oGis) -

Since go; is not the diagonal element of the metric, it is assigned to 0.
Moreover, again, since the metric components does not depend on time,
which gives

I'Y% =0, wherei=1,2,3.

3. When puv =ij where i,7 = 1,2,3 and 7 # 7,

1
Y = 9" (9,90 + Digo; — Bogij) -

2

20



3.1 Schwarzschild Metric

Similarly, go;, go; and g;; are off diagonal which gives
I';; =0, where 4,5 = 1,2,3 and i # j.
4. When pv = 0i where 1 = 1,2, 3,
o _ L oo
L'y = 59 (9igoo + ogoi — Dogoi) -
Similar to above, we have go; = 0 which gives
o _ L oo
Lo = 597 0ig00

2

where gog = A (r) and g% = A%T).

Since the function A (r) only depends on r, only the partial r term gives a

non-zero result, thus

11

Io =19 = 5 (0, A(r)),
11

F82 = Fgo = 2A (oA (r)) =0,
11

o =T = 24 (0pA (r)) = 0.

Therefore, the only one connection coefficient left for I') , is T}, = I')y =

37 (0:A ().

Just as stated, similar to the calculation of I'

pvo

2 3
[, and T'},. And all 9

we can calculate the

following non-zero connection coefficients for F,lw,

21



3.1 Schwarzschild Metric

non-zero Levi-Civite connection coeflicients are

11

o _ypo _ +1
Loy =15 = 5 (0rA(r)),
11 11
F(1)0 = §E (arA (T))v Fil = §§ (aTB (T))’
1
I3, = —sinfcos?, I3, =r3 = -

1

Presenting these connection coefficients in arrays makes it more obvious

OrA OrA
0 Fa 00 928
oA
- 0O 00 0
0 924 1
FW — , FW —
0 0 00 0
0 0 00 0
0 00 0 0 0
) 00 % 0 5 00
FW — , FW —
0 % 0 0 0 0
0 0 0 —sinfcosé 0 %

cot 0

Given these Levi-Civite connection coefficients, to solve for functions A (r)

and B (r), we can conduct the calculation of Ricci tensors.

To remember, given the Riemann tensor

R, =00, — 9,10, + T, It —T0 T

opuv Vot po

uo= vBo

the Ricci tensor is just the Riemann tensor with its upper and lower middle

indices summed together, as

Ry, = R"

v s =008 — 5D Ty T

22
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3.1 Schwarzschild Metric

Therefore, the Ricci components are

Roo = Rb0 = 0,Thy — 0ol + TTh, — rﬁorgﬂ,
Ry = Ribl = 8#F‘1‘1 - 81FZ1 + F?lrﬁa - Fﬁlf’fg,

Ry = Rg;ﬂ = 0, — 82Fﬁ2 + FSQFZa T §2Fgﬁ'

Now, take Ry as example, for each of the four terms, we need to look at the
non-zero connection coefficients and decide what the non-zero coefficients
in these summations are, referring to the solved 9 non-zero coefficients.

For the I'f, in Rpo, which has two zero indices on the bottom of the con-
nection coefficient, there is only one single non-zero connection coefficient
with two zero indices on the bottom which is 'y = 1+ (9,4 (r)). Thus,
even thought the p index is technically summed from 0 to 3, only the p =1
term stays around.

While, for the second term Fﬁo of Ryg, there are actually no connection
coefficients with 0 index on the lower right with the other two indices
matching. Thus, it goes to zero as FZO = 0.

For the third term I'G I, o must be 1 to match the non-zero coeffi-
cients.

For the fourth term FﬁoFgﬂ, B can be 0 or 1.
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3.1 Schwarzschild Metric

Hence,

Roo = Rl = 0,Th — 0Tk + T, — Dol
= 0i0g — 0+ Fcl)orﬁl - (onrgo + Fiorgl)
= a1F(1)0 + Fil)OFZ1 - Fﬂo% - F,torgl
nem OIS 91Tl + (TooTh + Tholhy + Thol'3: + Dol

= (T0oT'00 + IoT'0p + I20T'Go + I'36T'00) — (TaoL'01 + Iiol'or + Iagl'cy + Isel'01)

= OiTgy + Loolgy + Tool'1y + Lol + Tl — Tiglgo — ool

= 81F(1)0 + F(l)orh + Féorgl + F(l)orgl - F%or(l)o

- 81F(1)0 + F(I)OFL + 21‘(1)01“31 - F%ortl)o

oA  0.,A0.B 28TA 1 0,A0.A

=055 3528 T%2Br 24 2B

2
. (&A B—l) L %AQB A (04)

2 4B2 rB 4AB
Chain rule 8314 . arAarB + (%A _ (@A)Q
2B 4B2 rB  4AB

Remember that the Einstein’s field equations suggest that all the compo-
nents of the Ricci tensors are equal to zero, i.e., Ryg = 0, R;; = 0 and
Ry = 0.

Thus,

ZA  0,A0.B  0,A (A

Ry =
0" 9B 482 rB  4AB

=0.

For further simplification, denote the partial derivative of A and B with

respect to r as

8,A— A, 0,.B = B,

and multiply the equation by a common denominator of 4AB?r to get the

rid of the denominators, after which we have

Ryy = 2rABA” —rAA'B' + 4ABA’ — rBA” = 0.
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3.1 Schwarzschild Metric

Similarly, we can get Ry; and Ryy as

Ry = Ry, = 0,T% — 0Tk + T T, — T/, T,
= -0\l — 20,5, + ', T, + 204,15, — g, 1Y, — 2I'5,T%,

_R2A N (8,A) %408 0.8
24 1 4A? 1AB ' rB

= Ry = —2rABA” + rBA” 4+ rAA'B' + 4A*B' = 0.

And
Ry = Rby 5 = 0,1y — 051, + T5,Th, — rfﬂrgﬁ
= iy — 0ol + Ty (Ty +Ty) — Tipla
ro,_,0A4 OB
B 2AB = 2B?
= Rgo = —2ABA +2AB*> —rA'B+rAB = 0.

Given all the Ricci components are zero,

Ryy = 2rABA" —rAA'B' + 4ABA' —rBA” =0,
Riy = —2rABA" + rBA? + rAA'B' + 4A’B' = 0,
Ryy = —2ABA +2AB? —rA'B+rAB' =0,

we are able to solve for functions A (r) and B (r).
Note that
Roo + Ry = 4ABA' + 4A’B" = 0

= BA' + AB' =0

which is equivalent to say the partial derivative of AB with respect to r is
0, i.e.,

9, (AB) = 0.

Which implies that AB is a constant. Denote AB as K.

The value of the constant K is invariable and has nothing to do with
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3.1 Schwarzschild Metric

r. Thus, as r — y, i.e., as the Schwarzschild metric approaching to the flat
Minkowski metric, the value of K is invariable and equals to the value at
the Minkowski metric, i.e., g11g20 =1 x 1 = 1.

Thus, the constant K =1 for all r, implies that

holds for all r.
Substitute B = &+ = A~ and B’ = 9, (A7) = —2;; back to Rye formula

and we have

Ry = —2ABA+2AB?* —rAB+rAB =0

1 1 1 A’
—2A— 4+24A— —rA = —rA— =
= A+ 12 T 1 T Ve 0
=—-2A+2-2rA' =0
=rA =1-—A

k
=A(r) =1— —, where k is a constant
T

B0 = 575 - <1‘E)

Currently, we have got the form of the Schwarzschild metric as

_1—§ 0 0 0 |
0o —(1-H" 0 0
0 0 —r? 0
0 0 0 —r?sin?@

We can then solve the constant k by forcing the Schwarzschild metric to
reproduce Newtonian gravity in the limit of low velocity and weak gravity,
we will skip this part because it is too complicated to discuss here.

Actually, k is usually denoted as R, the Schwarzschild radius, or called
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3.2 Geodesics

as the event horizon of the black hole, given as

_2GM

k =

I

where GG is Newton’s gravitational constant.

Finally, we have the Schwarzschild metric to be

1 % 0 0 0
0 (1-2)™" 0 0
0 0 2 0 |
0 0 0 —r?sin?d
where k = 2C§2M , G is Newton’s gravitational constant, ¢ is the speed of

light and M is the mass of the Schwarzschild black hole.

3.2 Geodesics

A massive particle’s world line through spacetime can be parameterized by
its proper time 7. And the geodesic equation parameterized with proper

time parameter 7 as [5]

d?z° da? dz¥

loa

FrcI e

3.2.1 Null Geodesics

Since light beams are massless, they always have a proper time of zero by
definition, which means 7 = 0 for all light beams by all times. Instead, we
parameterize light-like paths by a generic path parameter A, which gives
tangent vectors % alone the light world lines.

A light-like geodesic (or called null geodesic) is a geodesic where every

tangent vector along the path is light-like, and of course, the rate of change
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3.2 Geodesics

of these tangent vectors is zero. Which gives another geodesic equation
that is parameterized with a generic path parameter A instead of proper
time 7, that works for massless particles [5],

d2x? , dztdx”

oz e g =0

The null geodesic equation is actually 4 separate equations, one for each
spacetime coordinate through the o index, which can refer to any of the

four spacetime variables, thus

d?ct  _, datdz”

e e 2 _
oz e iy =0
d3r dz# dx?

oz Tty =Y
d%6 LT dzt dz” 0
o Ty 2
d2¢ o dz# dz” 0.

ey
3.2.2 Numerical Solution

Rewrite the Schwarzschild metric as

T T

-1
ds? = (1 — %) dt? — <1 — %> dr? — r’df? — r*sin® 9d¢?

where R, = 2GM/c* (x).
Following the Schwarzschild metric above, the following Lagrangian can be

considered, noted as L?, such that

-1
L2 = ¢ (1 . &) 2 (1 . &> P2 2 (9’2 — sin? 9¢2>
T r

where dt =t and etc.
For the particle whose mass is zero, such as a photon that are used in

the following simulation, we choose an arbitrary affine parameter noted A
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3.2 Geodesics

for the universe line of the particle, (while if the particle has mass, then
the temporal derivatives can be taken with respect to the proper time
parameter 7, the parameter of the universe line of the massive particle).

Given the variational principle as ¢ [ L£2d)\ = 0, the Euler-Lagrange
equations gives

O L2 — dyOun L2 = 0,

where @ = x#/d\, with # € {t,r, 6, ¢} which can be separated into the

(1—&)t’:01,
T

1 2 -2 . .
(1 . &> i Bl (1 . E) f‘;f? _y (92 +sin20¢>2) —0,

r

equivalent system as following,

. 0 )
9—1—% —sinf cosH¢* =0,

r?sin®0¢ = Oy,

with C'1 and C2 as two constants that remain to be identified.

Since the Schwarzschild metric being, by construction, with spherical
symmetry, which shows that the trajectories of the particles are plane or
more precisely, are contained in a coordinated hypersurface with equation
0 = 0y [5]. Thus, the third equation in the above system admits for par-
ticular solution § = 7 /2. In this case, the above system can be simplified

into,

where h = 126 = Cj.
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3.3 Event Horizon

Moreover, the second equation can be replaced by ds?/d\? = 0, that is,

—1
<1—%>i2—(1—%> 2 — 2% = 0.
T T

Combining the other two equations, we have
h? R
72+ — <1 — —) = 0%

Then change the variable r by 1/u, deviate from ¢ which gives

d? 3R
¢ u? +u =0,

do? 2

which is the photon trajectory described by an ordinary differential equa-

tion, also the starting point of our Schwarzschild black hole simulation.

3.3 Event Horizon

Given that the Schwarzschild radius to be

2GM

5

Ry =

C

Obviously it is only depends on the mass of the object and some physical
constants.

Usually, G is very small while ¢? is quite large such that the Schwarzschild
radius is very small for most massive objects. However, when an object is
so incredibly massive and dense that its Schwarzschild radius Rs becomes
larger than its physical radius rg, the object is then called Schwarzschild
black hole and the Schwarzschild radius is then called the black hole’s event

horizon.
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3.4 Photon Sphere

3.4 Photon Sphere

Given the photon trajectory as

d>u 3R, ,

In order to calculate the photon sphere (which is the case that r must be
constant), by setting r equals to constant, the derivative of u with respect

to ¢, i.e., d%u = %%, therefore equals to zero.

Hence,

d2
Sy}
do?

Thus, the radius of photon sphere of the Schwarzschild metric can be given

as
3R51+1
2 r2 oy

3
= Tsphere = éRs
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Chapter 4

Algorithm

4.1 Trajectory

The trajectory function is aimed to solve the differential equation in spher-
ical coordinate for a static black hole, which allows us to compute the
photon trajectory given the distance from the black hole and the initial
angular speed.

The core of this function is to resolve the initial value problem for the

ODE system,

(@) =u(6) . )= Tou(@) —u()
with
v (0):%’ v (0) = thlmoz7

by simple iterations.

After detecting that the light ray reaches the set boundary, the itera-
tions will be stopped to determine whether the light ray has been captured
by the black hole or not. If it is captured, the corresponding interval of

initial angle with given precision will be given as result as well.
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4.1 Trajectory

The algorithm to achieve the desired goal is shown below,

Input: angle: initial angle, belongs to [0, 180) degree; dist: distance from
the observer to the center of black hole;

Output: return r, ¢, [min — 7, Qminl;

Data: ¢ = 1: speed of light in vacuum; G = 1: Newton Constant; M = 1:
Black hole mass; distance_maxr = 1: a multiple of D to prevent
divergence; dphi = 10 % x(—4): ¢’s range << 1 % (1074) avoiding
differences; ITERATION = int(3 x w/¢$): points to be calculated
(be aware of some trajectories may exceed a full lap); Rs = 2 * G
M /¢ % %2: Schwarzschild radius;

u=[1/dist] x ITERATION, ul = 1/(dist* tan(angle))
ITERATION_REFEL =0
for ¢ in range(ITERATION — 1) do

ITERATION _REEL+ =1
u2 = 3/2x Rsxuli]**2—uli], ul = ul+u2xdphi, u[i+1] = u[i|+ul*dphi
if 1/ufi + 1] <= Rs or 1/uli + 1] > distance_max * dist then
Break
end
end
phi = [phi_initial] * ITERATION -REEL

r = [dist] * ITERATION _REEL
for i in range(ITERATION _REFEL — 1) do
phili + 1] = phi[i] + dphi, r[i + 1] = 1/uli]

end

By using the above algorithm, the two cases can be displayed and examined.
First case is by fixing the initial angle and gradually decrease the dis-
tance between observer and the black hole and the result is shown by

Figure 4.1.
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4.1 Trajectory

Photon trajectories

90°
P —
—— Rs (black hole)

3*Rs/2

%

5]

10
15
20
25

135°

180°

315°

270°
phi(°)

Figure 4.1 Initial angle = 30 degree, initial distance = 10, distance ap-
proaching to 0 by 5 each step

While the second case does the opposite, fixing the distance and gradually

decrease the initial angle of light rays whose result is shown by Figure 4.2.

Photon trajectories

90°

180°

10
15

—— Rs (black hole)
3*Rs/2
—
270°
phi(®)

Figure 4.2 Initial angle = 80 degree, initial distance = 30, angle approach-
ing to 0 by 10 degree each step

Moreover, the interval of initial angular speed can be also generated and
to examine it, just take the radius of Schwarzschild metric Rs = 8, the
distance between the observer and black hole D = 50 as example, the
interval is calculated by the algorithm as [24.2,24.3] under the precision

of 0.1. The algorithm can be set to different precision according to our
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4.2 Visualization

requirements. As the precision decreases, the interval gets smaller and
smaller, as shown in Figure 4.3, allowing us to obtain the interval of initial
angle at which light is captured by the black holey, and to use the interval

to give the estimated initial angle.

90° 90°

180°

315° 315°

270° o € [22,26] 270° o € [24,25] 270° a€[24.2,243]

Figure 4.3 Tllustrate the ay,, search, first precision: a € [22,26]; second
precision: « € [24,25], third precision: a € [24.2,24.3].

4.2 Visualization

To obtain better visualization of the optical properties of a Schwarzschild
black hole, we first need to make coordinate operations, then make interpo-
lation decisions and deal with the pixel colors (R, G, B) information. And
a flow chart that displays the whole process has been generated as shown

in section 4.2.2.

4.2.1 Coordinate Operations

As shown in the geodesic part, by spherical symmetry, we can restrict to

the Schwarzschild equatorial plane without loss of generality which gives,

T
9_5,
oo
dx  dxz

That is to say, we can always rotate our coordinate system so that the
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4.2 Visualization

light trajectories lie in the equatorial plane of # = 7/2 as shown in the
Figure 4.4.

Given equirectangular images are two-dimensional images, the image
distorted by the black hole can be interpreted as the whole equirectangular
image rotates inside and outside the image plane with different rotation
axes centered on the black hole. Then the light trajectories close to the
black hole can then be calculated to complete distorted image.

In this case, the best way to get the resulting vector when rotating the
given vector around the axis is by using Euler—Rodrigues formula.

The Euler-Rodrigues formula explains the three-dimensional rotation of
a vector. It employs a different parametrization than Rodrigues’ rotation
formula — the rotation is represented by four Euler parameters due to
Leonhard Euler.

Given the three-dimensional vector v = [v,, v,, v,] that is needed to be
rotated around the three-dimensional axis u = [u,, uy, u,| and the rotation
angle 6 in radian, the four real numbers a, b, ¢ and d which represents the

rotation can be calculated as

0
a = cos —,
2
b Uy )
= ————sin —
iy cu, 27
uy i
¢c=———>—sin—,
Uy - Uy 2
u, .0
d=———-sin—.

/Uy - Uy

Then, the rotation matrix a can be calculated as

a?+ 0 —c*—d? 2 (be — ad) 2 (bd + ac)
a= 2 (be + ad) a? — b+ — & 2 (cd — ab)
2 (bd — ac) 2 (cd + ab) a?— b -+ d?
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4.2 Visualization

Hence, the vector v/ which is rotated by the rotation of vector v around

axis u in # angle can then be represented as

Once the rotation matrix « are generated and finished the whole rotation
on equirectangular image, it is pretty easy to conduct the following coor-
dinate operations. We then need to calculate the final position of light
rays according to the previous trajectory algorithm, and then transform
the light rays’ final position back to the equirectangular image plane using
the inverse rotation matrix —a.

Finally, loops go through each pixel to assign the (zs,y2) pixel color
(R, G, B) information to the (z,y) pixel.

37



4.2 Visualization

Initial pixel position

Equatorial plane

Light trajectory

Figure 4.4 Coordinate Operations
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4.2 Visualization

4.2.2 Flowchart

Given the BH's Schwarzschild
radius and the distance between
BH and observer

Y

Obtain pixel position (x,y)

Is (x,y)
inside BH

No

¥

Generate rotation matrix a by
Euler-Rodrigues formula

Y 3
Apply the rotation matrix «a to
the initial pixel position (x, y) Skip and leave blank
and get (x',y")
Y
Transform (x',y") into
spherical coordinate

(¢',7/2)
I

Apply the Trajectory function
and output the final position

(¢H' n/z)
3
Transform (¢,, 7/2) back
into Cartesian coordinates Loops browse every
",y pixels and attribute the
X (x,,y,) pixel color (R,G,B)
Apply the inverse rotation information to the (x,y)
matrix —a to (x"', ¥'") and get pixel
(x2,¥2)
; |

Gain distorted image by
Schwarzschild black hole
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4.2 Visualization

4.2.3 Visualization Result

Write the code according to the flowchart above and use the default RGB

image of the Python system as the input equirectangular image,

Figure 4.5 Default RGB Image

The equirectangular image, after being distorted by a Schwarzschild black
hole with Rs = 8 and D = 50, is obtained as

Figure 4.6 Image Distorted by a Schwarzschild Black Hole with Rs = 8,
D =50
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Chapter 5

Conclusion

In this signature work, the basic concepts and definitions of differential
geometry are briefly introduced, says metric, connection, Riemann curva-
ture tensor and geodesic equation. Then, the components of Einstein’s field
equations are introduced according to these basic concepts and definitions.

Afterwards, the derivation of the Schwarzschild Metric is shown. Next,
the concept of null geodesic is presented and the geodesics governed by
the Schwarzschild Metric is derived using Euler-Lagrange equation. Later,
event horizon and photon sphere are introduced as the properties derived
from Schwarzschild Metric are shown.

As for creation parts, the trajectories of light rays near a Schwarzschild
black hole are calculated by solving the geodesic equation in one variable
numerically. Then the optical distortion by a Schwarzschild black hole
of two-dimensional images can also be generated thanks to the circular
symmetry. In order to give a better visualization of Schwarzschild black
hole, a whole set of more complex code involving has been built.

This signature work could serve as starting point for modelling gravi-

tational lensing of accretion disks around black holes.

41



Bibliography

[1] John Stewart, Advanced General Relativity, Cambridge University Press 4 (1991),
1-55.

[2] Kazunori Akiyama et al., First M87 Event Horizon Telescope Results. I. The Shadow
of the Supermassive Black Hole, Astrophys (2019), J. 875(1), L1.

[B] —, First M87 Event Horizon Telescope Results. IV. Imaging the Central Su-
permassive Black Hole, Astrophys (2019), J. 875(1), L4.

[4] , First M87 Event Horizon Telescope Results. V. Physical Origin of the Asym-

metric Ring, Astrophys (2019), J. 875(1), L5.

[6] Subrahmanyan Chandrasekhar, The Mathematical Theory of Black Holes, Oxford
University Press (1983), 1-55. ISBN 0-19-851291-0.

42



	1 Introduction
	2 Spacetime
	2.1 Differential Geometry
	2.1.1 Tensor
	2.1.2 Metric
	2.1.3 Connection
	2.1.4 Riemann
	2.1.5 Geodesic Equation

	2.2 Einstein's Field Equations
	2.2.1 Components of Einstein's Field Equations
	2.2.2 Ricci Curvature Tensor
	2.2.3 Ricci Scalar
	2.2.4 Einstein Tensor
	2.2.5 Stress Energy-Momentum Tensor


	3 Schwarzschild
	3.1 Schwarzschild Metric
	3.1.1 Coordinates
	3.1.2 Summations
	3.1.3 Schwarzschild Metric Derivation

	3.2 Geodesics
	3.2.1 Null Geodesics
	3.2.2 Numerical Solution

	3.3 Event Horizon
	3.4 Photon Sphere

	4 Algorithm
	4.1 Trajectory
	4.2 Visualization
	4.2.1 Coordinate Operations
	4.2.2 Flowchart
	4.2.3 Visualization Result


	5 Conclusion

